viernes, 24 de mayo de 2013

Por qué existe una tabla

Por que se utiliza la tabla periodica
Los seres humanos siempre hemos estado tentados a encontrar una explicación a la complejidad de la materia que nos rodea. Al principio se pensaba que los elementos de toda materia eran al agua, la tierra, el fuego y el aire. Sin embargo al cabo del tiempo y gracias a la mejora de las técnicas de experimentación física y química, nos dimos cuenta de que la materia es en realidad más compleja de lo que parece. Los químicos del siglo XIX encontraron entonces la necesidad de ordenar los nuevos elementos descubiertos. La primera manera, la más natural, fue la de clasificarlos por masas atómicas, pero esta clasificación no reflejaba las diferencias y similitudes entre los elementos. Muchas más clasificaciones fueron adoptadas antes de llegar a la tabla periódica que es utilizada en nuestros días.

jueves, 16 de mayo de 2013

Visión histórica del átomo

VISIÓN HISTÓRICA
Los filósofos griegos discutieron mucho sobre la naturaleza de la materia y concluyeron que el mundo era más sencillo de lo que parecía.
 En el siglo V a.c., Leucipo pensaba que sólo había un tipo de materia. Sostenía, además, que si dividíamos la materia en partes cada vez más pequeñas, acabaríamos encontrando una porción que no se podría seguir dividiendo. Un discípulo suyo, Demócrito, bautizó a estas partes indivisibles de materia con el nombre de átomos, término que en griego significa “que no se puede dividir”.
 Empédocles estableció que la materia estaba formada por 4 elementos: tierra, agua, aire y fuego.
Aristóteles negó la existencia de los átomos de Demócrito y reconoció la teoría de los 4 elementos, que, gracias al prestigio que tenía, se mantuvo vigente en el pensamiento de la humanidad durante 2000 años. Hoy sabemos que aquellos 4 elementos iniciales no forman parte de los 106 elementos químicos actuales.
Malena Passero

martes, 14 de mayo de 2013

Modelo atómico de Rutherford 
    El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandéz. Ernest Rutherford para explicar los resultados de su experimento de la lámina de oro, realizado en 1911.
Este experimento consistió en :
_Colocar un electrodo que expulsara partículas alfa
_Enfrente de ese electrodo colocar una fina lámina de oro
_Detrás de la lamina de oro un recipiente floreciente  
   Al cruzar por la lámina de oro, las partículas alfa cruzaban cerca del núcleo de las moléculas de oro y se desviaban chocando con la lámina fluorescente dando un destello.

Nahuel Sack, Alexis criscuoli

viernes, 10 de mayo de 2013


John Dalton y su modelo atómico

La era atómica comenzó en 1808, cuando un profesor de escuela presentó sus ideas respecto a cómo debían ser las partículas más pequeñas de materia.
John DaltonNació en Eaglesfield, Inglaterra, en 1766, en el seno de una humilde familia de tejedores. Siendo todavía un niño, tenía que ayudar a sus padres a tejer ropa y trabajar en las labores del campo, al mismo tiempo que estudiaba. Su familia pertenecía a un grupo religioso cuyos acólitos se llaman “cuáqueros”, que en síntesis, promueven la humildad y reniegan de las autoridades eclesiásticas. 

A diferencia de otros niños pobres, él pudo ir a la escuela y tuvo un buen profesor que lo incentivó a seguir estudiando. Se esforzó, tuvo buenas notas y con sólo 12 años, empezó a trabajar como profesor, debido a sus necesidades económicas. Le encantaba investigar y aprender, y con ese espíritu trabajó durante toda su vida. Cuando murió, a los 78 años (1844), miles de personas acudieron a rendirle homenaje en el funeral. ¿Sabes de quién estamos hablando? De John Dalton, el responsable del primer modelo de átomo con base científica. En el fondo, con Dalton la humanidad comenzó el camino que la condujo a utilizar la energía atómica.

El modelo atómico de Dalton fue expuesto en un libro llamado “Nuevo sistema de filosofía química”, y en síntesis decía lo siguiente:
  • La materia está formada por partículas pequeñísimas llamadas “átomos”.
  • Estos átomos no se pueden dividir ni romper, no se crean ni se destruyen en ninguna reacción química, y nunca cambian.
  • Los átomos de un mismo elemento son iguales entre sí, tienen la misma masa y dimensiones; por ejemplo, todos los átomos de hidrógeno son iguales.
  • Por otro lado, los átomos de elementos diferentes, son diferentes; por ejemplo, los átomos de oxígeno son diferentes a los átomos de hidrógeno.
  • Los átomos pueden combinarse para formar compuestos químicos. Por ejemplo, los átomos de hidrógeno y oxígeno pueden combinarse y formar moléculas de agua.
  • Los átomos, al combinarse para formar compuestos guardan relaciones simples.
  • Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto. Por ejemplo, un átomo de carbono con uno de oxígeno forman monóxido de carbono (CO), mientras que dos átomos de oxígeno con uno de carbono, forman dióxido de carbono (CO2)
Algunas de estos planeamientos perdieron vigencia con el tiempo. Hoy sabemos que los átomos sí se pueden dividir y que no todos los átomos de un mismo elemento son iguales; pero es innegable que fueron muy importantes para la ciencia.

Esa no fue, sin embargo, la única contribución de John Dalton. Hizo muchos otros aportes en el campo de la meteorología y la física, e incluso en la medicina: cuando tenía 26 años se dio cuenta de que tanto él como su hermano confundían los colores. Realizó un detallado estudio de la enfermedad visual que padecía, el primero de su tipo, y por tanto desde ese momento se llamó “daltonismo”. En 1832 fue invitado a visitar al rey Guillermo IV y, cuál no fue la sorpresa de los presentes cuando el eminente científico llegó vistiendo un llamativo traje de color rojo. Claro, él lo veía gris oscuro, porque era, además de Dalton, daltónico.

Joaquin Lucas Torterolo

martes, 7 de mayo de 2013

 Modelo Atómico de Bohr 


Bohr unió la idea de átomo nuclear de Rutherford con las ideas de una nueva rama de la Ciencia: la Física Cuántica. Así, en 1913 formuló una hipótesis sobre la estructura atómica en la que estableció tres postulados:
¤ El electrón no puede girar en cualquier órbita, sino sólo en un cierto número de órbitas estables. En el modelo de Rutherford se aceptaba un número infinito de órbitas.
¤ Cuando el electrón gira en estas órbitas no emite energía.
¤ Cuando un átomo estable sufre una interacción, como puede ser el imapacto de un electrón o el choque con otro átomo, uno de sus electrones puede pasar a otra órbita estable o ser arrancado del átomo.
El átomo de hidrógeno según el modelo atómico de Bohr
¤ El átomo de hidrógeno tiene un núcleo con un portón.
¤ El átomo de hidrógeno tiene un electrón que está girando en la primera órbita alrededor del núcleo. Esta órbita es la de menor energía.
¤ Si se le comunica energía a este electrón, saltará desde la primera órbita a otra de mayor energía. cuando regrese a la primera órbita emitirá energía en forma de radiación luminosa.



Joaquín  Lucas Torterolo

domingo, 5 de mayo de 2013

Biografia de Dalton, Thompson y Rutherford

John Dalton  

Dalton John desk.jpg
Eaglesfield, Cumberland (Reino Unido), 6 de septiembre de 1766 y murió  Mánchester27 de julio de 1844; fue un naturalistaquímicomatemático y meteorólogobritánico.
John Dalton nació en una familia cuáquera de la población de Eaglesfield, en Cumberland, Inglaterra. Hijo de un tejedor, sabemos que tuvo cinco hermanos, de los cuales sobrevivieron dos: Jonathan, mayor que Dalton, y Mary, de la que se desconoce su fecha de nacimiento. Dalton fue enviado a una escuela cuáquera donde aprendió matemática y destacó lo suficiente para, a la edad de 12 años, poder contribuir a la economía familiar dando clases a otros niños, primero en su casa y después en el templo cuáquero. Los ingresos eran modestos por lo que se dedicó a trabajos agrícolas hasta que en 1781 se asoció con su hermano Jonathan, que ayudaba a uno de sus primos a llevar una escuela cuáquera en la cercana Kendal.

                          Teoría Atómica:
La más importante de todas las investigaciones de Dalton fue la teoría atómica, que está indisolublemente asociada a su nombre. Se ha propuesto que esta teoría se la sugirieron, o bien sus investigaciones sobre el etileno («gas oleificante») y metano (hidrógeno carburado) o los análisis que realizó del óxido nitroso (protóxido de nitrógeno) y del dióxido de nitrógeno (dióxido de ázoe), son puntos de vista que descansan en la autoridad de Thomas Thomson. Sin embargo, un estudio de los cuadernos de laboratorio propio de Dalton, descubierto en las habitaciones de la Lit & Phil, llegó a la conclusión de que lejos de haber sido llevado por su búsqueda de una explicación de la ley de las proporciones múltiples a la idea de que la combinación química consiste en la interacción de los átomos de peso definido y característico, la idea de los átomos surgió en su mente como un concepto puramente físico, inducido por el estudio de las propiedades físicas de la atmósfera y otros gases. Los primeros indicios de esta idea se encuentran al final de su nota ya mencionada sobre la absorción de gases, que fue leída el 21 de octubre de 1803, aunque no se publicó hasta 1805.


Joseph John Thompson

Jj-thomson3.jpgManchesterReino Unido, 18 de diciembre de 1856 y murió en  Cambridge, Reino Unido, 30 de agosto de 1940; fue un científico británico, descubridor del electrón, de los isótopos e inventor del espectrómetro de masa. En 1906 fue galardonado con el Premio Nobel de Física.
Thomson nació en 1856 en Cheetham Hill, un distrito de Manchester en Inglaterra, y tenía ascendencia escocesa. En 1870 estudió ingeniería en el Owens College, hoy parte de la Universidad de Manchester, y se trasladó al Trinity College de Cambridge en 1876. En 1880, obtuvo su licenciatura en Matemáticas (Segunda Wrangler y segundo premio Smith) y MA (obteniendo el Premio Adams) en 1883. En 1884 se convirtió en profesor de Física en Cavendish. Uno de sus alumnos fue Ernest Rutherford, quien más tarde sería su sucesor en el puesto.
En 1890 se casó con Rose Elizabeth Paget, hija de Sir Edward George Paget, KCB, un médico, y en ese entonces Regius Profesor de Medicina (Regius Professor of Physic) en Cambridge. Con ella, fue padre de un hijo, George Paget Thomson, y una hija, Joan Paget Thomson. Su hijo se convirtió en un destacado físico, quien a su vez fue galardonado con el Premio Nobel de Física en 1937 por demostrar las propiedades de tipo ondulatorio de los electrones.

Descubrimiento de los isótopos:

También, Thomson examinó los rayos positivos y, en 1911, descubrió la manera de utilizarlos para separar átomos de diferente masa. El objetivo se consiguió desviando los rayos positivos en campos eléctricos y magnéticos (espectrometría de masas). Así descubrió que el neón tiene dos isótopos (el neón-20 y el neón-22).
En la esquina inferior derecha de esta placa fotográfica hay marcas para los dos isótopos del neón: neón - 20 y neón - 22. En 1913, como parte de su exploración en la composición de los rayos canales, Thomson canalizó una corriente de neón ionizado mediante un campo magnético y un campo eléctrico y midió su desviación colocando una placa fotográfica en el camino del rayo. Thomson observó dos parches de luz sobre la placa fotográfica (ver imagen a la derecha), lo que supone dos parábolas de desviación. Thomson llegó a la conclusión de que el gas neón se compone de dos tipos de átomos de diferentes masas atómicas (neón-20 y neón-22).

Ernest Rutherford
Ernest Rutherford.jpgConocido también como Lord Rutherford: Brightwater, Nueva Zelanda, 30 de agosto de 1871 y murió en Cambridge, Reino Unido, 19 de octubre de 1937; fue un físico y químico neozelandés.
Se dedicó al estudio de las partículas radioactivas y logró clasificarlas en alfa (α), beta (β) y gamma (γ). Halló que la radiactividad iba acompañada por una desintegración de loselementos, lo que le valió ganar el Premio Nobel de Química en 1908. Se le debe un modelo atómico, con el que probó la existencia del núcleo atómico, en el que se reúne toda la cargapositiva y casi toda la masa del átomo. Consiguió la primera transmutación artificial con la colaboración de su discípulo Frederick Soddy.
Su padre, James, era un escocés granjero y mecánico, y su madre, Martha Rutherford, nacida en Inglaterra, que era maestra, emigró antes de casarse. Ambos deseaban dar a sus hijos una buena educación y tratar de que pudiesen proseguir sus estudios.
Rutherford destacó muy pronto por su curiosidad y su capacidad para la aritmética. Sus padres y su maestro lo animaron mucho, y resultó ser un alumno brillante, lo que le permitió entrar en el Nelson College, en el que estuvo tres años. También tenía grandes cualidades para el rugby, lo que le valía ser muy popular en su escuela. El último año, terminó en primer lugar en todas las asignaturas, gracias a lo cual entró en la Universidad, en el Canterbury College, en el que siguió practicando el rugby y en el que participó en los clubes científicos y de reflexión.

El núcleo atómico:
En 1907, obtiene una plaza de profesor en la Universidad de Mánchester, en donde trabajará junto a Hans Geiger. Junto a éste, inventará un contador que permite detectar las partículas alfa emitidas por sustancias radiactivas (prototipo del futuro contador Geiger), ya que ionizando el gas que se encuentra en el aparato, producen una descarga que se puede detectar. Este dispositivo les permite estimar el número de Avogadro de modo muy directo: averiguando el periodo de desintegración del radio, y midiendo con su aparato el número de desintegraciones por unidad de tiempo. De ese modo dedujeron el número de átomos de radio presente en su muestra.
En 1908, junto a uno de sus estudiantes, Thomas Royds, demuestra de modo definitivo lo que se suponía: que las partículas alfa son núcleos de helio. En realidad, lo que prueban es que una vez liberadas de su carga, las partículas alfa son átomos de helio. Para demostrarlo, aisló la sustancia radiactiva en un material suficientemente delgado para que las partículas alfa lo atravesaran efectivamente, pero para ello bloquea cualquier tipo de "emanación" de elementos radiactivos, es decir, cualquier producto de la desintegración. Recoge a continuación el gas que se halla alrededor de la caja que contiene las muestras, y analiza su espectro. Encuentra entonces gran cantidad de helio: los núcleos que constituyen las partículas alfa han recuperado electrones disponibles.
Ese mismo año gana el Premio Nobel de Química por sus trabajos de 1908. Sufrirá sin embargo un pequeño disgusto, pues él se considera fundamentalmente un físico. Una de sus citas más famosas es que "la ciencia, o es Física, o es filatelia", con lo que sin duda situaba la física por encima de todas las demás ciencias.

Brandon S. Sosa Peralta.



Modelo mecánico del átomo de Bohr

A continuación se presenta un montaje experimental que permite demostrar la aparición de ondas estacionarias circulares en un anillo de caucho que se hace vibrar. Considerando que el anillo representa la órbita seguida por el electrón alrededor del protón, y que el electrón puede visualizarse como una onda de materia, se encuentra que solo para ciertas frecuencias de vibración del sistema aparecen estados estacionarios. Estos corresponden, según la analogía establecida, a las órbitas estables planteadas por Bohr en su modelo.

Materiales & Equipos

  • Generador de señales
  • Parlante
  • Tabla de madera con anillo de cauchos

Descripción del experimento

El modelo del átomo de hidrógeno planteado por Niels Bohr en 1.913 consiste en un núcleo conformado por un protón sobre el que gira un electrón siguiendo una órbita circular. El electrón no se precipita hacia el núcleo por acción de la fuerza electrostática existente entre las cargas debido a que hay ciertas órbitas estables en las que puede permanecer el electrón.
Cada órbita estable tiene asociado un radio y una energía que depende de un índice entero n. Estos estados estables surgen de la suposición de que el momento angular L del electrón está cuantizado según la relación:
La suposición de que el momento angular está cuantizado no resulta del todo natural de interpretar; sin embargo si se combina esta hipótesis, con la relación propuesta por de Broglie, en donde el electrón tiene asociada una longitud de onda (λ = h / mv), se encuentra que las órbitas estables son aquellas en las que quedan inscritas exactamente un número entero de longitudes de onda; es decir son aquellas que satisfacen la siguiente condición:
Se concluye entonces que las órbitas estables en donde permanece el electrón son aquellas en donde pueden quedar inscritas un número entero de longitudes de onda asociadas al electrón. En la siguiente figura se presentan dos casos de orbitas en donde una es permitida y la otra no.

V.A

Biografia de Bohr

Niels Henrik David Bohr

Niels Bohr.jpgNacimiento: 7 de octubre de 1885
                   Copenhague, Dinamarca

Fallecimiento: 18 de noviembre de 1962, 77 años ibíd.

Residencia: Dinamarca

Nacionalidad: Danesa

Campo: Física

Instituciones: Universidad de Copenhague

Alma máter: Universidad de Copenhague

Supervisor doctora: Christian Christiansen

Conocido por :Realizar importantes contribuciones para la comprensión de la estructura del átomo.

Premios Destacados: Premio Nobel de Física en 1922
V.A

viernes, 3 de mayo de 2013


Teorías Atomistas de Dalton, Thomson y Rutherford
Descripción: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgqSmM1trH2GgWHaPqYO63EZgdjXvclL8uLy5uWUG2ORZdXuSyHGWB57jcKwt0fIq-7kqHseDx9JPpuoFOK_cPU16e2ykpyfv7CSQenvSiBZRwJ5VaTYfXA9g-LMV4H7rQL112HWd-6sMq2/s200/thomson.pngjoshep John Thomson: realizó una serie de experimentos en tubos de rayos catódicos, que le condujeron al descubrimiento de los electrones. Thomson utilizó el tubo de rayos catódicos en tres diferentes experimentos.
En su tercer experimento (1897), Thomson determinó la relación entre la carga y la masa de los rayos catódicos, al medir cuánto se desvían por un campo magnético y la cantidad de energía que llevan. Encontró que la relación carga/masa era más de un millar de veces superior a la del ion Hidrógeno, lo que sugiere que las partículas son muy livianas o muy cargadas
                                                                                                                                                                                    Las conclusiones de Thomson fueron audaces: los rayos catódicos estaban hechos de partículas que llamó "corpúsculos", y estos corpúsculos procedían de dentro de los átomos de los electrodos, lo que significa que los átomos son, de hecho, divisibles. Thomson imaginó que el átomo se compone de estos corpúsculos en un mar lleno de carga positiva; a este modelo del átomo, atribuido a Thomson, se le llamó el modelo de pudín de pasas.
                                        Descripción: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhYGC_OaJWDr44sLfry2JNOW2YoHH-3x2VnbHYRLaYzI7T4yjCHs0ndo8hZdlZSOdtsWkK6lrQHuL6JFLh7weRYTLqTcbaQJQE9PggS3baThR_oGwfnRSwWjArMZuWp6jfxEijr1Lz9coBk/s1600/generador.png                                                                                                                                                                                     El modelo atómico de Thomson, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, descubridor del electrón en 1897, mucho antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como un budín de pasas. Se pensaba que los electrones se distribuían Dicho modelo fue rebatido tras el experimento de Rutherford, cuando se descubrió el núcleo del átomo. uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga negativa se postulaba con una nube de carga positiva.
Descripción: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEipcx_Pcki2PZRjJdIDeYyFt43KHYcgUE-RJLSdxNuqVubRFFXI7YjNQUr6Md3Pkyir1m_zG4e-Fp9wu-ZZYC3VsCtXN6_F5y2J_Za7pr-KwpUwKyAL-KWFrVhWCYxlyamBgm4FXC1pfVat/s1600/rutherford.png
Limitaciones del modelo atómico de Thomson:
Según el modelo de Thomson, los átomos están constituidos por una distribución de carga y masa regular, y éstos están unidos unos con otros formando la sustancia. Es decir, la sustancia debería poseer una estructura interna homogénea y, por tanto, las partículas al atravesarla deberían tener un comportamiento uniforme. Tras los experimentos de Rutherford, y tras el descubrimiento de las partículas subatómicas se vio que lo dicho por Thomson no se cumplía.
        Por otro lado, aunque Thomson explicó la formación de iones, dejó sin explicación la existencia de las otras reacciones.
Descripción: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhzoDEvJIzmBZ62rY4-9tjaZkH6en05Z9YF4aHjFnzcsrXWswo0A6GTiRt8fQYIo4npOQZcdhWLfuaAhsUhNl9gLdXmGTSyOBgwiK_Ag5W8aZbmDJiPd9xNw4ZN5ltLxWHDEIhIudRwBQwT/s1600/240px-John_Dalton_by_Charles_Turner.jpgJohn Dalton: tomó como punto de partida una serie de evidencias experimentales conocidas en su época:

ü  Las sustancias elementales no pueden descomponerse.

ü  Las sustancias, simples o compuestas, tienen siempre las mismas propiedades características.

ü  Los elementos no desaparecen al formarse un compuesto, pues se pueden recuperar por descomposición de éste.

ü  La masa se conserva en las reacciones químicas, que provenía de la Ley de conservación de la masa del químico francés Lavoisier.

ü  La proporción de los elementos que forman un compuesto es constante, que provenía de la Ley de las proporciones definidas del también químico francés Proust.

     La materia está formada por partículas pequeñísimas llamadas “átomos”. Estos átomos no se pueden dividir ni romper, no se crean ni se destruyen en ninguna reacción química, y nunca cambian. Los átomos de un mismo elemento son iguales entre sí, tienen la misma masa y dimensiones; por ejemplo, todos los átomos de hidrógeno son iguales. Por otro lado, los átomos de elementos diferentes, son diferentes; por ejemplo, los átomos de oxígeno son diferentes a los átomos de hidrógeno. Los átomos pueden combinarse para formar compuestos químicos. Por ejemplo, los átomos de hidrógeno y oxígeno pueden combinarse y formar moléculas de agua. Los átomos, al combinarse para formar compuestos guardan relaciones simples. Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto. Por ejemplo, un átomo de carbono con uno de oxígeno forman monóxido de carbono, mientras que dos átomos de oxígeno con uno de carbono, forman dióxido de carbono.
El modelo atómico de Dalton, fue el primer modelo atómico con bases científicas, formulado en 1808 . Para Dalton los átomos eran esferas macizas.
Dalton explicó su teoría formulando una serie de enunciados simples:
Descripción: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhw7Tw3HLqP-POKIyKRchINANvqL6rAFwktA_70Oit9F5zV1pwHU7wX2pcqKD1MXJHak-16vYj-HnERFj8f-8Gx-cSgVu8dTRrYkyFt56EOW1DgoUjMJtC2toDWywQxZjWhM_t11pqCEdZv/s1600/dalton.png
                                            .La materia está formada por partículas muy pequeñas llamadas, que son indivisibles y no se pueden destruir.  
                                            ·Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
                                            ·Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
                                            ·Los átomos, al combinarse para formar compuestos guardan relaciones simples.
·         Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto. Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.
Limitaciones del modelo atómico de Dalton:
En un principio, Dalton dijo que la materia estaba formada por átomos, es decir, por partículas indivisibles e inalterables. Pero al descubrirse la existencia de las partículas subátomicas, se comprobó que el átomo no era indivisible. A pesar de que la teoría de Dalton era errónea, significó un avance muy importante en el camino de la comprensión de la materia. Además, la aceptación del modelo de Dalton no fue inmediata, y durante bastantes años muchos científicos se resistieron a reconocer la existencia del átomo.
                     
Descripción: http://eltamiz.com/images/2011/May/Ernest_Rutherford.jpg
                     Ernest   Rutherford centró sus investigaciones en las características de las radiactividad, diseñando su famosa experiencia de bombardear láminas delgadas de distintas sustancias, utilizando como proyectiles las partículas alfa (α).

Realizó en 1911 una experiencia que supuso en paso adelante muy importante en el conocimiento del átomo. La experiencia de Rutherford consistió en bombardear con partículas alfa una finísima lámina de oro. Las partículas alfa atravesaban la lámina de oro y eran recogidas sobre una pantalla de sulfuro de cinc. Poseía información sobre el tamaño, masa y carga del núcleo, pero no tenía información alguna acerca de la distribución o posición de los electrones.

Descripción: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjFvObVhGTRD5E_qmYOB6fb6eJha3bX_50pThMOdr4R_jPfA7Bp-9mBjri1RDfR5kLydJvNxhyf4hrmFCKK7h2DLKBrDmCs3tk1vlEQi9gfHBLqeNZzITeRmSMFCOtAN8zDN6SxN5ijFTy6/s400/laminilla.png
El modelo atómico de Rutherford es unateoría sobre la estructura interna del átomo propuesto por el químico y físico británico neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.
El modelo de Rutherford fue el primer modelo atómico que consideró al átomo formado por dos partes: la "corteza", constituida por todos sus electrones, girando a gran velocidad alrededor de un "núcleo", muy pequeño, que concentra toda la carga eléctrica positiva y casi toda la masa del     átomo. Descripción: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhxnkkc-hPsiuRWWiKjgBeQlYk2xTJtUX9koOm5kpJBweq4Os27kFwhpb-RLbbsSPtQPEFrY7vc8FUlZDci_IM1TtL0C0dfFpXXXnY_Yl5cED_Jl58uB0snKChMDSJxkqpbXQxksb_R_XM/s320/500px-Rutherford_atom_svg.png
Limitaciones del modelo atómico de Rutherford:
Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abrían varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlos:
Por un lado se planteó el problema de cómo un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales.
Por otro lado existía otra dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada y acelerada, como sería el caso de los electrones orbitando alrededor del núcleo, produciría radiación electromagnética, perdiendo energía y finalmente cayendo sobre el núcleo. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de  s, toda la energía del átomo se habría radiado, con la consiguiente caída de los electrones sobre el núcleo. Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clasica    

Nicolás Yair Malicoutakis

martes, 30 de abril de 2013

Niels Bohr


Niels Bohr
(Niels Henrick David Bohr; Copenhague, 1885 - 1962) Físico danés. Considerado como una de las figuras más deslumbrantes de la Física contemporánea y, por sus aportaciones teóricas y sus trabajos prácticos, como uno de los padres de la bomba atómica, fue galardonado en 1922 con el Premio Nobel de Física, "por su investigación acerca de la estructura de los átomos y la radiación que emana de ellos".
Cursó estudios superiores de Física en la Universidad de Copenhague, donde obtuvo el grado de doctor en 1911. Tras haberse revelado como una firme promesa en el campo de la Física Nuclear, pasó a Inglaterra para ampliar sus conocimientos en el prestigioso Cavendish Laboratory de la Universidad de Cambridge, bajo la tutela de sir Joseph John Thomson (1856-1940), químico británico distinguido con el Premio Nobel en 1906 por sus estudios acerca del paso de la electricidad a través del interior de los gases, que le habían permitido descubrir la partícula bautizada luego por Stoney (1826-1911) como electrón.
Añadir leyenda

Niels Bohr
Precisamente al estudio de los electrones estaba dedicada la tesis doctoral que acababa de leer el joven Bohr en Copenhague, y que había llevado a territorio británico con la esperanza de verla traducida al inglés. Pero, comoquiera que Thomson no se mostrara entusiasmado por el trabajo del científico danés, Bohr decidió abandonar el Cavendish Laboratory y marcharse a la Universidad de Manchester, donde aprovechó las enseñanzas de otro premio Nobel, Ernest Rutherford (1871-1937), para ampliar sus saberes acerca de las radiactividad y los modelos del átomo.
A partir de entonces, entre ambos científicos se estableció una estrecha colaboración que, sostenida por firmes lazos de amistad, habría de ser tan duradera como fecunda. Rutherford había elaborado una teoría del átomo que era totalmente válida en un plano especulativo, pero que no podía sostenerse dentro de las leyes de la Física clásica. Borh, en un alarde de audacia que resultaba impredecible en su carácter tímido y retraído, se atrevió a soslayar estos problemas que obstaculizaban los progresos de Rutherford con una solución tan sencilla como arriesgada: afirmó, simplemente, que los movimientos que se daban dentro del átomo están gobernados por unas leyes ajenas a las de la Física tradicional.
En 1913, Niels Bohr alcanzó celebridad mundial dentro del ámbito de la Física al publicar una serie de ensayos en los que revelaba su particular modelo de la estructura del átomo. Tres años después, el científico danés regresó a su ciudad natal para ocupar una plaza de profesor de Física Teórica en su antigua alma mater; y, en 1920, merced al prestigio internacional que había ido adquiriendo por sus estudios y publicaciones, consiguió las subvenciones necesarias para la fundación del denominado Instituto Nórdico de Física Teórica (más tarde denominado Instituto Niels Bohr), cuya dirección asumió desde 1921 hasta la fecha de su muerte (1962). En muy poco tiempo, este Instituto se erigió, junto a las universidades alemanas de Munich y Göttingen, en uno de los tres vértices del triángulo europeo donde se estaban desarrollando las principales investigaciones sobre la Física del átomo.
En 1922, año en el que Bohr se consagró definitivamente como científico de renombre universal con la obtención del Premio Nobel, vino al mundo Aage Niels Bohr (1922), que habría de seguir los pasos de su padre y colaborar con él en varias investigaciones. Doctorado también en Física, fue, al igual que su progenitor, profesor universitario de dicha materia y director del Instituto Nórdico de Física Teórica, y recibió el Premio Nobel en 1975.
Inmerso en sus investigaciones sobre el átomo y la Mecánica cuántica, Niels Bohr enunció, en 1923, el principio de la correspondencia, al que añadió, en 1928, el principio de la complementariedad. A raíz de esta última aportación se fue constituyendo en torno a su figura la denominada "escuela de Copenhague de la Mecánica cuántica", cuyas teorías fueron combatidas ferozmente -bien es verdad que en vano- por Albert Einstein (1879-1955). A pesar de estas diferencias, sostenidas siempre en un plano teórico -pues Einstein sólo pudo oponer a las propuestas de Borh elucubraciones mentales-, el padre de la teoría de la relatividad reconoció en el físico danés a "uno de los más grandes investigadores científicos de nuestro tiempo".
En la década de los años treinta, Niels Bohr pasó largas temporadas en los Estados Unidos de América, adonde llevó las primeras noticias sobre la fisión nuclear -descubierta en Berlín, en 1938, por Otto Hahn (1879-1968) y Fritz Strassmann (1902-1980)-, que habrían de dar lugar a los trabajos de fabricación de armas nucleares de destrucción masiva. Durante cinco meses, trabajó con J. A. Wheeler en el Instituto de Estudios Avanzados de Princeton (Nueva Jersey), y anunció, junto con su colaborador, que el plutonio habría de ser fisionable, al igual que lo era el uranio.
De regreso a Dinamarca, fue elegido presidente de la Real Academia Danesa de Ciencias (1939). Volvió a instalarse en Copenhague, en donde continuó investigando e impartiendo clases hasta que, en 1943, a raíz de la ocupación alemana, tuvo que abandonar su país natal debido a sus orígenes judíos. Su vida y la de los suyos llegaron a estar tan amenazadas que se vio forzado a embarcar a su familia en un pequeño bote de pesca y poner rumbo a Suecia. Pocos días después, Bohr se refugió en los Estados Unidos y, bajo el pseudónimo de Nicholas Baker, empezó a colaborar activamente en el denominado "Proyecto Manhattan", desarrollado en un laboratorio de Los Álamos (Nuevo México), cuyo resultado fue la fabricación de la primera bomba atómica.
Al término de la II Guerra Mundial (1939-1945), retornó a Dinamarca y volvió a ponerse al frente del Instituto Nórdico de Física Teórica. A partir de entonces, consciente de las aplicaciones devastadoras que podían tener sus investigaciones, se dedicó a convencer a sus colegas de la necesidad de usar los hallazgos de la Física nuclear con fines útiles y benéficos. Pionero en la organización de simposios y conferencias internacionales sobre el uso pacífico de la energía atómica, en 1951 publicó y divulgó por todo el mundo un manifiesto firmado por más de un centenar de científicos eminentes, en el que se afirmaba que los poderes públicos debían garantizar el empleo de la energía atómica para fines pacíficos. Por todo ello, en 1957, recibió el premio Átomos para la Paz, convocado por la Fundación Ford para favorecer las investigaciones científicas encaminadas a la mejora de la Humanidad.
Director, desde 1953, de la Organización Europea para Investigación Nuclear, Niels Henrik David Borh falleció en Copenhague durante el otoño de 1962, a los setenta y siete años de edad, después de haber dejado impresas algunas obras tan valiosas comoTeoría de los espectros y constitución atómica (1922),Luz y vida (1933), Teoría atómica y descripción de la naturaleza (1934), El mecanismo de la fisión nuclear(1939) y Física atómica y conocimiento humano (1958).
El átomo de Bohr
Las primeras aportaciones relevantes de Bohr a la Física contemporánea tuvieron lugar en 1913, cuando, para afrontar los problemas con que había topado su maestro y amigo Rutherford, afirmó que los movimientos internos que tienen lugar en el átomo están regidos por leyes particulares, ajenas a las de la Física tradicional. Al hilo de esta afirmación, Bohr observó también que los electrones, cuando se hallan en ciertos estados estacionarios, dejan de irradiar energía.
En realidad, Rutherford había vislumbrado un átomo de hidrógeno conformado por un protón (es decir, una carga positiva central) y un partícula negativa que giraría alrededor de dicho protón de un modo semejante al desplazamiento descrito por los planetas en sus órbitas en torno al sol. Pero esta teoría contravenía las leyes de la Física tradicional, puesto que, a tenor de lo conocido hasta entonces, una carga eléctrica en movimiento tenía que irradiar energía, y, por lo tanto, el átomo no podría ser estable.
Bohr aceptó, en parte, el modelo de Rutherford, pero lo superó combinándolo con las teorías cuánticas de Max Planck (1858-1947). En los tres artículos que publicó en el Philosophical Magazine en 1913, enunció cuatro postulados: 1) Un átomo posee un determinado número de órbitas estacionarias, en las cuales los electrones no radian ni absorben energía, aunque estén en movimiento. 2) El electrón gira alrededor de su núcleo de tal forma que la fuerza centrífuga sirve para equilibrar con exactitud la atracción electrostática de las cargas opuestas. 3) El momento angular del electrón en un estado estacionario es un múltiplo de h/2p (donde h es la constante cuántica universal de Planck).
Según el cuarto postulado, cuando un electrón pasa de un estado estacionario de más energía a otro de menos (y, por ende, más cercano al núcleo), la variación de energía se emite en forma de un cuanto de radiación electromagnética (es decir, un fotón). Y, a la inversa, un electrón sólo interacciona con un fotón cuya energía le permita pasar de un estado estacionario a otro de mayor energía. Dicho de otro modo, la radiación o absorción de energía sólo tiene lugar cuando un electrón pasa de una órbita de mayor (o menor) energía a otra de menor (o mayor), que se encuentra más cercana (o alejada) respecto al núcleo. La frecuencia f de la radiación emitida o absorbida viene determinada por la relación: E1-E2=hf, donde E1 y E2 son las energías correspondientes a las órbitas de tránsito del electrón.
Merced a este último y más complejo postulado, Borh pudo explicar por qué, por ejemplo, los átomos de hidrógeno ceden distintivas longitudes de onda de luz, que aparecen en el espectro del hidrógeno como una distribución fija de líneas de luz conocida comoserie de Balmer.
En un principio, esta estructura del átomo propuesta por Bohr desconcertó a la mayor parte de los científicos de todo el mundo; pero, a raíz de que su colega y maestro Rutherford le felicitara efusivamente por estos postulados, numerosos investigadores del Centro y el Norte de Europa comenzaron a interesarse por las ideas del físico danés, y algunos de ellos -como James Franck (1882-1964) y Gustav Hertz (1887-1975)- proporcionaron nuevos datos que confirmaban la validez del modelo de Bohr. Su teoría se aplicó, en efecto, al estudio del átomo de hidrógeno, aunque enseguida pudo generalizarse a otros elementos superiores, gracias a la amplitud y el desarrollo que le proporcionó el trabajo de Arnold Sommerfeld (1868-1951) -que mejoró el modelo del danés para explicar la estructura fina del espectro-. De ahí que los postulados lanzados por Bohr en 1913 puedan considerarse como las bases donde se sustenta la Física nuclear contemporánea.
Con la formulación de estos postulados, Niels Borh logró, en efecto, dar una explicación cuantitativa del espectro del hidrógeno; pero, fundamentalmente, consiguió establecer los principios de la teoría cuántica del átomo en la forma más clara y concisa posible. Pero, ante todo, su gran acierto fue señalar que estos principios eran irracionales desde el punto de vista de la mecánica clásica, y advertir que requerían una nueva limitación en el uso de los conceptos ordinarios de causalidad.
Para fijar las circunstancias en que debían concordar la mecánica clásica y las nuevas teorías de la mecánica cuántica, Borh estableció en 1923 el denominado principio de correspondencia, en virtud del cual la Mecánica cuántica debe tender hacia la teoría de la Física tradicional al ocuparse de los fenómenos macroscópicos (o, dicho de otro modo, siempre que las constantes cuánticas llegue a ser despreciables).
Sirviéndose de este principio, Bohr y sus colaboradores -entre los que se contaba el joven Werner Karl Heisenberg (1901-1976), otro futuro premio Nobel de Física- trazaron un cuadro aproximado de la estructura de los átomos que poseen numerosos electrones; y consiguieron otros logros como explicar la naturaleza de los rayos X, los fenómenos de la absorción y emisión de luz por parte de los átomos, y la variación periódica en el comportamiento químico de los elementos.
En 1925, su ayudante Heisenberg enunció el principio de indeterminación o de incertidumbre, según el cual era utópica la idea de poder alcanzar, en el campo de la microfísica, un conocimiento pleno de la realidad de la Naturaleza en sí misma o de alguna de las cosas que la componen, ya que los instrumentos empleados en la experimentación son objetos naturales sometidos a las leyes de la física tradicional.
La formulación de este luminoso principio de Heisenberg sugirió, a su vez, a Bohr un nuevo precepto: el principio de complementariedad de la Mecánica cuántica. Partiendo de la dualidad onda-partícula recientemente enunciada por el joven Louis de Broglie (1892-1987) -es decir, de la constatación de que la luz y los electrones actúan unas veces como ondas y otras como partículas-, Bohr afirmó que, en ambos casos, ni las propiedades de la luz ni las de los electrones pueden observarse simultáneamente, por más que sean complementarias entre sí y necesarias para una interpretación correcta.
En otras palabras, el principio de complementariedadexpresa que no existe una separación rígida entre los objetos atómicos y los instrumentos que miden su comportamiento. Ambos son, en opinión de Bohr, complementarios: elementos de diversas categorías, incluyendo fenómenos pertenecientes a un mismo sistema atómico, pero sólo reconocibles en situaciones experimentales físicamente incompatibles.
Siguiendo este razonamiento, Bohr también consideró que eran complementarias ciertas descripciones, generalmente causales y espacio-temporales, así como a ciertas propiedades físicas como la posición y el momento precisos. En su valioso ensayo titulado Luz y vida (1933), el científico danés, dando una buena muestra de sus singulares dotes para la especulación filosófica, analizó las implicaciones humanas de este principio de complementariedad.
En la década de los años treinta, el creciente interés de todos los científicos occidentales por el estudio del interior del núcleo del átomo -con abundante experimentación al respecto- llevó a Bohr al estudio detallado de los problemas surgidos al tratar de interpretar los nuevos conocimientos adquiridos de forma tan repentina por la Física atómica. Fue así como concibió su propio modelo de núcleo, al que comparó con una gota líquida, y propuso la teoría de los fenómenos de desintegración nuclear. Con ello estaba sentando las bases de la fisión nuclear, que acabaría dando lugar al más poderoso instrumento de exterminio concebido hasta entonces por el ser humano: la bomba atómica.
Bohr no llegó, empero, en primer lugar al hallazgo de la fisión nuclear, conseguida por vez primera -como ya se ha indicado más arriba- por Otto Hahn y Fritz Strassmann, en el Berlín de 1938. El 15 de enero de 1939 llevó las primeras nuevas de este logro científico a los Estados Unidos de América, en donde demostró que el isótopo 235 del uranio es el responsable de la mayor parte de las fisiones. Durante este fructífero período de colaboración, en el Instituto de Estudios Avanzados de Princeton (Nueva Jersey), con J. A. Wheeler, esbozó una nueva teoría del mecanismo de fisión, según la cual el elemento 94 -es decir, el plutonio, que no habría de ser obtenido hasta un año después por Glenn Theodore Seaborg (1912-1999)-, tendría, el proceso de fisión nuclear, idéntico comportamiento al observado en el U-235.   


Tomas Ibalo  Leandro Origuela